- Visto: 650
Trabajo Original
Dosificación de vancomicina guiada por software bayesiano versus dosificación guiada por criterio clínico en pacientes de un Hospital de Tercer Nivel en Costa Rica: un estudio cuasiexperimental
Edición XXV Setiembre - Diciembre 2023
DOI: https://doi.org/10.55139/ZQQB2474
Daniela Matarrita Brenes
Estudiante de Farmacia. Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica.
Deborah Rojas Leiva
Estudiante de Farmacia. Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica.
José Manuel Fallas Ramírez
Profesor Asociado. Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica.
Luis Esteban Hernández Soto
Decano de Farmacia. Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica.
Luis David Garro Zamora
Farmacéutico. Servicio de Farmacia, Hospital México, San José, Costa Rica.
Resumen
Se realizó una comparación de la optimización de la dosificación de vancomicina mediante el software de apoyo a la decisión clínica bayesiano (GSB) versus la guiada por criterios clínicos (CC) para determinar si el software bayesiano podría lograr el objetivo farmacocinético y farmacodinámico (FC/ FD) del tratamiento con vancomicina de manera más precisa.
Se trata de un estudio observacional retrospectivo cuasiexperimental de un año, en el que se analizó la optimización simulada de dosis por CC y GSB en una población de pacientes adultos hospitalizados con infección por SARM en el Hospital México, Costa Rica.
Se obtuvieron dos grupos de datos: los modelados según CC y los obtenidos mediante las dosis por GSB. Los niveles mínimos se clasificaron según si estaban dentro o fuera del rango terapéutico objetivo (15-20 mg/L). Se utilizó estadística inferencial y descriptiva.
Un total de 31 pacientes fueron incluidos en el estudio. Los regímenes de dosificación por GSB alcanzaron el objetivo terapéutico en el 100% de las dosis empíricas y ajustadas. En el caso de los regímenes CC después del ajuste de la dosis, el 35,5% de los pacientes fueron expuestos a niveles séricos subterapéuticos y el 35,5% a niveles supraterapéuticos.
El GSB fue más preciso para lograr el objetivo FC/FD tanto para dosis empíricas como ajustadas. Además, la dosificación de CC expuso a un número significativo de pacientes a niveles subterapéuticos y supraterapéuticos que pueden estar asociados con resistencia bacteriana y nefrotoxicidad.
Palabras claves
Vancomicina, SARM, software bayesiano, farmacocinética, farmacodinámica.
Abstract
A comparison of vancomycin dosing optimization by Bayesian clinical decision support software (CDS) versus that guided by clinical criteria (CC) was performed to determine whether the Bayesian decision support tool could be more accurate in achieving the pharmacokinetic and pharmacodynamic (PK/PD) goal of vancomycin treatment by steadystate trough levels.
A retrospective observational study over a period of one year, in which an analysis of dosing optimization by CC and a CDS using Bayesian software (DoseMeRx®) was performed in a population of hospitalized adult patients with MRSA infection at Hospital Mexico, Costa Rica.
Two groups of data were obtained: those modeled according to the dosage established by CC and those obtained employing the doses suggested by the CDS. The trough levels were classified according to whether they were within or outside the target therapeutic range (15-20 mg/L). Inferential and descriptive statistics were used for the analysis of results.
A total of 31 patients were included in the study. The dosing regimens obtained by CDS reached the therapeutic target of trough levels in 100% of the empirical and adjusted doses. In the case of CC regimens, after dose adjustment, 35.5% of the patients were exposed to subtherapeutic serum levels and 35.5% to supratherapeutic serum levels.
CDS was found to be more accurate in achieving the pharmacokinetic/pharmacodynamic target for both empirical and adjusted doses. In addition, CC dosing exposed a significant number of patients to subtherapeutic and supratherapeutic levels that may be associated with bacterial resistance and nephrotoxicity.
Keywords
Vancomycin, MRSA, Bayesian software, clinical criteria, pharmacokinetics, pharmacodynamics.
Bibliografía
1. Vancomycin: Drug information UpToDate [Internet]. [cited 2020 Dec 7]. Available from: https://www-uptodate-com.ezproxy.sibdi.ucr.ac.cr/contents/vancomycin-drug-information?search=vancomicina&source=panel_search_result&selectedTitle=1~148&usage_type=panel&kp_tab=drug_general&display_rank=1#F233313
2. Bruniera F, Ferreira F, Saviolli L, Bacci M, Feder D, Da Luz M, et al. The use of vancomycin with its therapeutic and adverse effects: a review. In: European Review for Medical and Pharmacological Sciences [Internet]. 2015. p. 694-700. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.679.2266&rep=rep1&type=pdf
3. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, Kaplan SL, Karchmer AW, Levine DP, Murray BE, J Rybak M, Talan DA, Chambers HF; Infectious Diseases Society of America. Clinical practice guidelines by the infectious diseases’ society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011 Feb 1;52(3):e18-55. doi: 10.1093/cid/ciq146. Epub 2011 Jan 4. Erratum in: Clin Infect Dis. 2011 Aug 1;53(3):319. PMID: 21208910.
4. Monaco, M., Pimentel de Araujo, F., Cruciani, M., Coccia, E.M., Pantosti, A. (2016). Worldwide Epidemiology and Antibiotic Resistance of Staphylococcus aureus. In: Bagnoli, F., Rappuoli, R., Grandi, G. (eds) Staphylococcus aureus. Current Topics in Microbiology and Immunology, vol 409. Springer, Cham. https://doi.org/10.1007/82_2016_3
5. Anderson DJ. Methicillin-resistant Staphylococcus aureus (MRSA) in adults: Epidemiology UpToDate [Internet]. 2020 [citado 17 de mayo de 2021]. Disponible en: https://www.uptodate.com/contents/methicillin-resistant-staphylococcus-aureus-mrsa-in-adults-epidemiology#H17
6. Rybak MJ, Le J, Lodise TP, Levine DP, Bradley JS, Liu C, Mueller BA, Pai MP, Wong-Beringer A, Rotschafer JC, Rodvold KA, Maples HD, Lomaestro BM. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2020 May 19;77(11):835-864. doi: 10.1093/ajhp/zxaa036. PMID: 32191793.
7. He N, Su S, Yan Y, Liu W, Zhai S. The Benefit of Individualized Vancomycin Dosing Via Pharmacokinetic Tools: A Systematic Review and Meta-analysis. Ann Pharmacother. 2020 Apr;54(4):331343. doi: 10.1177/1060028019887363. Epub 2019 Nov 6. PMID: 31694384.
8. Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, Mackenzie FM. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents. 2012 Apr;39(4):273-82. doi: 10.1016/j. ijantimicag.2011.09.030. Epub 2012 Jan 9. PMID: 22230333.
9. Avent ML, Rogers BA. Optimising antimicrobial therapy through the use of Bayesian dosing programs. Int J Clin Pharm. 2019 Oct;41(5):1121-1130. doi: 10.1007/s11096-019-00886-4. Epub 2019 Aug 7. PMID: 31392582.
10. DoseMeRx Bayesian Dosing Platform [Internet]. DoseMeRx. [cited 20 May 2021]. Available from: https://doseme-rx.com/
11. Buelga DS, del Mar Fernandez de Gatta M, Herrera EV, Dominguez-Gil A, García MJ. Population pharmacokinetic analysis of vancomycin in patients with hematological malignancies. Antimicrob Agents Chemother. 2005 Dec;49(12):4934-41. doi: 10.1128/ AAC.49.12.4934-4941.2005. PMID: 16304155; PMCID: PMC1315926.
12. Cusumano JA, Klinker KP, Huttner A, Luther MK, Roberts JA, LaPlante KL. Towards precision medicine: Therapeutic drug monitoring-guided dosing of vancomycin and -lactam antibiotics to maximize effectiveness and minimize toxicity. Am J Health Syst Pharm. 2020 Jul 7;77(14):1104-1112. doi: 10.1093/ajhp/zxaa128. PMID: 32537644.
13. Clinically validated vancomycin models and AUC calculations made simple [Internet]. DoseMeRx. [citado 23 de mayo de 2021]. Disponible en: https://doseme-rx.com/why-dosemerx/drug-packages/vancomycin-models
14. Hughes DM, Goswami S, Keizer RJ, Hughes MA, Faldasz JD. Bayesian clinical decision support-guided versus clinician-guided vancomycin dosing in attainment of targeted pharmacokinetic parameters in a paediatric population. J Antimicrob Chemother. 2020 Feb 1;75(2):434-437. doi: 10.1093/jac/dkz444. PMID: 31670812.
15. Neely MN, Kato L, Youn G, Kraler L, Bayard D, van Guilder M, Schumitzky A, Yamada W, Jones B, Minejima E. Prospective Trial on the Use of Trough Concentration versus Area under the Curve to Determine Therapeutic Vancomycin Dosing. Antimicrob Agents Chemother. 2018 Jan 25;62(2): e02042-17. doi: 10.1128/AAC.0204217. PMID: 29203493; PMCID: PMC5786789.
16. Sabourenkov PE, McLeay RC. 1599. AUC24 Vancomycin Bayesian-Based Dosing: Increasing Therapeutic Target Attainment with Decreased TDM Cost. Open Forum Infect Dis. 2019 Oct 23;6(Sup-pl 2): S583. doi: 10.1093/ofid/ofz360.1463. PMCID: PMC6809216.
17. Vali L, Jenkins DR, Vaja R, Mulla H. Personalised dosing of vancomycin: A prospective and retrospective comparative quasi-experimental study. Br J Clin Pharmacol. 2021 Feb;87(2):506-515. doi: 10.1111/bcp.14411. Epub 2020 Jun 30. PMID: 32495366.
18. Lodise TP, Rosenkranz SL, Finnemeyer M, Evans S, Sims M, Zervos MJ, Creech CB, Patel PC, Keefer M, Riska P, Silveira FP, Scheetz M, Wunderink RG, Rodriguez M, Schrank J, Bleasdale SC, Schultz S, Barron M, Stapleton A, Wray D, Chambers H, Fowler VG, Holland TL. The Emperor’s New Clothes: PRospective Observational Evaluation of the Association Between Initial VancomycIn Exposure and Failure Rates Among ADult HospitalizEd Patients with Methicillin-resistant Staphylococcus aureus Bloodstream Infections (PROVIDE). Clin Infect Dis. 2020 Apr 10;70(8):1536-1545. doi: 10.1093/cid/ciz460. PMID: 31157370; PMCID: PMC7145993.
19. He N, Su S, Yan Y, Liu W, Zhai S. The Benefit of Individualized Vancomycin Dosing Via Pharmacokinetic Tools: A Systematic Review and Meta-analysis. Ann Pharmacother. 2020 Apr;54(4):331343. doi: 10.1177/1060028019887363. Epub 2019 Nov 6. PMID: 31694384.
20. Finch NA, Zasowski EJ, Murray KP, Mynatt RP, Zhao JJ, Yost R, Pogue JM, Rybak MJ. A Quasi-Experiment to Study the Impact of Vancomycin Area under the Concentration-Time Curve-Guided Dosing on Vancomycin-Associated Nephrotoxicity. Antimicrob Agents Chemother. 2017 Nov 22;61(12): e01293-17. doi: 10.1128/ AAC.01293-17. PMID: 28923869; PMCID: PMC5700348.
21. Neely MN, Youn G, Jones B, Jelliffe RW, Drusano GL, Rodvold KA, Lodise TP. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob Agents Chemother. 2014;58(1):309-16. doi: 10.1128/AAC.01653-13. Epub 2013 Oct 28. PMID: 24165176; PMCID: PMC3910745.
Esta obra está bajo una licencia internacional Creative Commons: Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)

Realizar búsqueda
Última Edición
Ediciones