- Visto: 354
Revisión Bibliográfica
Papel de las neurotrofinas en la clínica, prevención y manejo de la enfermedad de Parkinson: una revisión bibliográfica, 2023
Edición XXVI Enero - Abril 2024
DOI: https://doi.org/10.55139/TFRF1487
Yazlin Alvarado Rodríguez
Gerente de Docencia e Investigación, Hospital Clínica Bíblica, San José, Costa Rica.
Álvaro Lazo Sevilla
Estudiante de último año de la Carrera de Medicina y Cirugía, Universidad Hispanoamericana, San José, Costa Rica.
Resumen
Las neurotrofinas son una familia de moléculas encargadas de potenciar la neuroplasticidad y mantener la función neuronal a largo plazo. Los estudios en modelos animales demuestran la importancia de estas moléculas en la génesis de los trastornos neurodegenerativos, por lo que es relevante entender su papel en el manejo y prevención de la enfermedad de Parkinson.
Palabras claves
Enfermedad de Parkinson, BDNF, GDNF, Neurotrofina, Cribado, Prevención, Tratamiento.
Abstract
Neurotrophins are a family of molecules that promote neuroplasticity and maintain neuronal function over the long term. Studies in animal models have demonstrated the importance of these molecules in the pathogenesis of neurodegenerative disorders, making it important to understand their role in the management and prevention of Parkinson’s disease..
Keywords
Parkinson’s disease, BDNF, GDNF, Neurotrophins, Screening, Prevention, Treatment.
Bibliografía
1. Martínez-Fernández. R, Gasca-Salas C. C, Sánchez-Ferro Á, Ángel Obeso J. Actualización en la enfermedad de Parkinson. Revista Médica Clínica Las Condes. mayo de 2016;27(3):363-79.
2. Acosta GT, Céspedes KC, Trías JF. Descripción clínica de pacientes con Enfermedad de Parkinson, evaluados en la Clínica de Trastornos del Movimiento del Hospital San Juan de Dios en Costa Rica. 2017;
3. Li S, Le W. Milestones of Parkinson’s Disease Research: 200 Years of History and Beyond. Neurosci Bull. octubre de 2017;33(5):598602.
4. Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, et al. Pathophysiology of Motor Dysfunction in Parkinson’s Disease as the Rationale for Drug Treatment and Rehabilitation. Parkinson’s Disease. 2016;2016:1-18.
5. Camacho MA. Las neurotrofinas. Instituto Nacional de Psiquiatría
Ramón de la Fuente Muñiz. 2019;
6. Lim Y, Zhong JH, Zhou XF. Development of mature BDNF-specific
sandwich ELISA. J Neurochem. julio de 2015;134(1):75-85.
7. Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. IJMS. 21 de octubre de 2020;21(20):7777.
8. Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson’s Disease. IJMS. 10 de febrero de 2020;21(3):1170.
9. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery. 1 de abril de 2021;88:105906.
10. Huang Y, Yun W, Zhang M, Luo W, Zhou X. Serum concentration and clinical significance of brain-derived neurotrophic factor in patients with Parkinson’s disease or essential tremor. J Int Med Res. abril de 2018;46(4):1477-85.
11. Tang C, Sun R, Xue K, Wang M, Liang S, Kambey PA, et al. Distinct serum GDNF coupling with brain structural and functional changes underlies cognitive status in Parkinson’s disease. CNS Neurosci Ther. 17 de septiembre de 2023;cns.14461.
12. Tong SY, Wang RW, Li Q, Liu Y, Yao XY, Geng DQ, et al. Serum glial cell line-derived neurotrophic factor (GDNF) a potential biomarker of executive function in Parkinson’s disease. Front Neurosci. 23 de febrero de 2023;17:1136499.
13. Wang L, Gao Z, Chen G, Geng D, Gao D. Low Levels of Adenosine and GDNF Are Potential Risk Factors for Parkinson’s Disease with Sleep Disorders. Brain Sciences. 24 de enero de 2023;13(2):200.
14. Chen G, Du Y, Li X, Kambey PA, Wang L, Xia Y, et al. Lower GDNF Serum Level Is a Possible Risk Factor for Constipation in Patients With Parkinson Disease: A Case–Control Study. Front Neurol. 13 de enero de 2022;12:777591.
15. Shi MY, Ma CC, Chen FF, Zhou XY, Li X, Tang CX, et al. Possible role of glial cell line-derived neurotrophic factor for predicting cognitive impairment in Parkinson’s disease: a case-control study. Neural Regen Res. 2021;16(5):885.
16. Huang Y, Huang C, Yun W. Peripheral BDNF/TrkB protein expression is decreased in Parkinson’s disease but not in Essential tremor. Journal of Clinical Neuroscience. mayo de 2019;63:176-81.
17. Costa CM, Oliveira GL de, Fonseca ACS, Lana R de C, Polese JC, Pernambuco AP. Levels of cortisol and neurotrophic factor brain-derived in Parkinson’s disease. Neuroscience Letters. agosto de 2019;708:134359.
18. Rocha NP, Ferreira JPS, Scalzo PL, Barbosa IG, Souza MS de, Christo PP, et al. Circulating levels of neurotrophic factors are unchanged in patients with Parkinson’s disease. Arq Neuro-Psiquiatr. mayo de 2018;76(5):310-5.
19. Khalil H, Alomari MA, Khabour OF, Al-Hieshan A, Bajwa JA. Relationship of circulatory BDNF with cognitive deficits in people with Parkinson’s disease. Journal of the Neurological Sciences. marzo de 2016;362:217-20.
20. Wang Y, Liu H, Du XD, Zhang Y, Yin G, Zhang BS, et al. Association of low serum BDNF with depression in patients with Parkinson’s disease. Parkinsonism & Related Disorders. agosto de 2017;41:73-8.
21. Ventriglia M, Zanardini R, Bonomini C, Zanetti O, Volpe D, Pasqualetti P, et al. Serum Brain-Derived Neurotrophic Factor Levels in Different Neurological Diseases. BioMed Research International. 2013;2013:1-7.
22. Wang Y, Liu H, Zhang BS, Soares JC, Zhang XY. Low BDNF is associated with cognitive impairments in patients with Parkinson’s disease. Parkinsonism & Related Disorders. agosto de 2016;29:66-71.
23. Siuda J, Patalong-Ogiewa M, Żmuda W, Targosz-Gajniak M, Niewiadomska E, Matuszek I, et al. Cognitive impairment and BDNF serum levels. Neurologia i Neurochirurgia Polska. enero de 2017;51(1):24-32.
24. Ferrusola-Pastrana A, Davison G, Meadows SN. The therapeutic effects of multimodal exercise for people with Parkinson’s: A longitudinal community-based study. Parkinsonism & Related Disorders. mayo de 2023;110:105366.
25. Stuckenschneider T, Abeln V, Foitschik T, Abel T, Polidori MC, Strüder HK. Disease inclusive exercise classes improve physical fitness and reduce depressive symptoms in individuals with and without Parkinson’s disease—A feasibility study. Brain and Behavior. octubre de 2021;11(10):e2352.
26.Zoladz JA, Majerczak J, Zeligowska E, Mencel J, Jaskolski A, Jaskolska A, et al. Moderate-intensity interval training increases serum brain-derived neurotrophic factor level and decreases inflammation in parkinson’s disease patients. 2014;
27.Harro CC, Shoemaker MJ, Coatney CM, Lentine VE, Lieffers LR, Quigley JJ, et al. Effects of nordic walking exercise on gait, motor/ non-motor symptoms, and serum brain-derived neurotrophic factor in individuals with Parkinson’s disease. Front Rehabilit Sci. 14 de octubre de 2022;3:1010097.
28.Marusiak J, Żeligowska E, Mencel J, Kisiel-Sajewicz K, Majerczak J, Zoladz J, et al. Interval training-induced alleviation of rigidity and hypertonia in patients with Parkinsonâ€TMs disease is accompanied by increased basal serum brain-derived neurotrophic factor. J Rehabil Med. 2015;47(4):372-5.
29.Pondé P de DS, Krause Neto W, Rodrigues DN, Cristina L, Bastos MF, Sanches IC, et al. Chronic responses of physical and imagery training on parkinson’s disease. Rev Bras Med Esporte. diciembre de 2019;25(6):503-8.
30.Freidle M, Johansson H, Ekman U, Lebedev AV, Schalling E, Thompson WH, et al. Behavioural and neuroplastic effects of a double-blind randomised controlled balance exercise trial in people with Parkinson’s disease. npj Parkinsons Dis. 21 de enero de 2022;8(1):12.
31.Belchior LD, Tomaz BS, Abdon APV, Frota NAF, Mont’Alverne DGB, Gaspar DM. Treadmill in Parkinson’s: influence on gait, balance, BDNF and Reduced Glutathione. Fisioter mov. 2017;30(suppl 1):93100.
32.Sajatovic M, Ridgel A, Walter E, Tatsuoka C, Colon-Zimmermann K, Ramsey R, et al. A randomized trial of individual versus group-format exercise and self-management in individuals with Parkinson’s disease and comorbid depression. PPA. mayo de 2017;Volume 11:965-73.
33.Whone A, Luz M, Boca M, Woolley M, Mooney L, Dharia S, et al. Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease. Brain. 1 de marzo de 2019;142(3):512-25.
34.Whone AL, Boca M, Luz M, Woolley M, Mooney L, Dharia S, et al. Extended Treatment with Glial Cell Line-Derived Neurotrophic Factor in Parkinson’s Disease. JPD. 23 de mayo de 2019;9(2):301-13.
35.Lloyd K, Lawton M, Whone A. Practically Defined Off State Dyskinesia Following Repeated I NTra p UTamENaL Glial Cell Line–Derived Neurotrophic Factor Administration. Movement Disorders. enero de 2023;38(1):104-12.
36.Kostrzewa RM, Nowak P, Kostrzewa JP, Kostrzewa RA, Brus R. Peculiarities of L-DOPA treatment of Parkinson’s disease. Amino Acids. 1 de marzo de 2005;28(2):157-64.
37.Walsh JJ, Tschakovsky ME. Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Appl Physiol Nutr Metab. noviembre de 2018;43(11):1095104.
38.Björkholm C, Monteggia LM. BDNF – a key transducer of antide-
pressant effects. Neuropharmacology. marzo de 2016;102:72-9.
39.Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci. junio de 2023;26(6):1032-41.
Esta obra está bajo una licencia internacional Creative Commons: Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Realizar búsqueda
Última Edición
Ediciones